A computational approach to dynamic bipedal walking
نویسندگان
چکیده
The main contribution of this work is a general method for stabilization of periodic orbits for hybrid systems with impact effects. Our primary motivation is controller synthesis for walking robots, but the method can be also applied to problems such as flight control or automotive control. Limit cycles of hybrid systems are characterized by the fact that they span different dynamic regimes. For smooth systems, dynamics of the system along the limit cycle can be decomposed into the transverse and tangential components. We demonstrate that this decomposition can be adapted to hybrid systems. Furthermore, we show that when the transverse dynamics is linearized and discretized, the resulting robust control synthesis problem can be cast as a semidefinite program and thus efficiently solved. We demonstrate our results through the simulation on a simple planar biped robot.
منابع مشابه
Hybrid Zero Dynamics of Planar Bipedal Walking
Models of bipedal robots in motion are fundamentally hybrid due to the presence of continuous phases, discrete transitions, and unilateral constraints arising from the contact forces between the robot and the ground. A major challenge in the control of bipedal robots has been to create a feedback theory that provides systematic synthesis methods, provable correctness and computational tools for...
متن کاملEnergy Dissipation Rate Control Via a Semi-Analytical Pattern Generation Approach for Planar Three-Legged Galloping Robot based on the Property of Passive Dynamic Walking
In this paper an Energy Dissipation Rate Control (EDRC) method is introduced, which could provide stable walking or running gaits for legged robots. This method is realized by developing a semi-analytical pattern generation approach for a robot during each Single Support Phase (SSP). As yet, several control methods based on passive dynamic walking have been proposed by researchers to provide an...
متن کاملReconstructing human push recovery reactions using a three dimensional under-actuated bipedal robot
This paper presents the ability of hybrid zero dynamics (HZD) feedback control method to reproduce human like movements for walking push recovery of an under-actuated 3D biped model. The balance recovery controller is implemented on a three-dimensional under-actuated bipedal model subjected to a push disturbance. The biped robot model is considered as a hybrid system with eight degrees of freed...
متن کاملSemi-Passive Dynamic Walking Approach for Bipedal Humanoid Robot Based on Dynamic Simulation
The research on the principles of legged locomotion is an interdisciplinary endeavor. Such principles are coming together from research in biomechanics, neuroscience, control theory, mechanical design, and artificial intelligence. Such research can help us understand human and animal locomotion in implementing useful legged vehicles. There are three main reasons for exploring the legged locomot...
متن کاملDevelopment of a Bipedal Humanoid Robot: Control Method of Whole Body Cooperative Dynamic Biped Walking
The authors have focused on the bipedal humanoid robot expected to play an active role in human living space, through studies on an anthropomorphic biped walking robot. As the first stage of developing a bipedal humanoid robot, the authors developed the human-size 35 active DOF bipedal humanoid robot “WABIAN” and the human-size 41 active DOF bipedal humanoid robot “ WABIAN-R”. The authors also ...
متن کاملGait Regulation for Bipedal Locomotion
This work explores regulation of forward speed, step length, and slope walking for the passive-dynamic class of bipedal robots. Previously, an energy-shaping control for regulating forward speed has appeared in the literature; here we show that control to be a special case of a more general time-scaling control that allows for speed transitions in arbitrary time. As prior work has focused on po...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003